RT
Scientists have managed to record histories in the DNA of human cells, allowing them to recall past “memories.” The advancement could prove vital for researchers studying how cells undergo genetic changes that lead to disease.
The advancement was made by biological engineers at Massachusetts Institute of Technology (MIT), using the genome-editing system CRISPR. The system consists of a DNA-cutting enzyme called Cas9 and a short RNA strand. The strand guides the enzyme to a specific area of the genome, directing Cas9 where to make its cut.
Although CRISPR is well known for its gene editing capabilities, the MIT team managed to use it for memory storage – the first that can record the duration and intensity of events in human cells. Such memories include events such as inflammation.
To encode the memories, the scientists designed guide strands that recognize the DNA that encodes the very same guide strand. It's a concept they refer to as “self-targeting guide RNA.”
Read more
Scientists have managed to record histories in the DNA of human cells, allowing them to recall past “memories.” The advancement could prove vital for researchers studying how cells undergo genetic changes that lead to disease.
The advancement was made by biological engineers at Massachusetts Institute of Technology (MIT), using the genome-editing system CRISPR. The system consists of a DNA-cutting enzyme called Cas9 and a short RNA strand. The strand guides the enzyme to a specific area of the genome, directing Cas9 where to make its cut.
Although CRISPR is well known for its gene editing capabilities, the MIT team managed to use it for memory storage – the first that can record the duration and intensity of events in human cells. Such memories include events such as inflammation.
To encode the memories, the scientists designed guide strands that recognize the DNA that encodes the very same guide strand. It's a concept they refer to as “self-targeting guide RNA.”
Read more
No comments:
Post a Comment